

Polytraumatisme: Particularités pédiatriques

Incidence de 28/10000/an USA

1ère cause de décès chez l'enfant >1 an dans les pays industrialisés Décès dans 14 à 25 % des cas

A 1 an de l'accident : 42% de séquelles neuro-motrices

Coût (traitement + perte productivité) 41000\$/100000/an USA

Traumatisme **fermé** dans 80% des cas

Traumatisme crânien dans 80-90% des cas

isolé

Associé à des lésions extracrâniennnes dans 45 % des cas

Mortalité immédiate sur les lieux accident

• 50 % des décès
Par lésions cérébrales
ou cardiovasculaires
majeures

Mortalité précoce

dans les premières heures après accident

• 30 % des décès

Par TC, hémorragies

massives, asphyxie

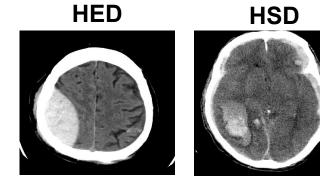
obstructive

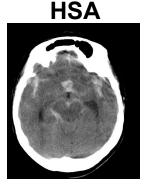
Mortalité évitable Mortalité tardive

• 20 % des décès Par sepsis, DMV, LATA

Rapport élevé volume de la tête / reste du corps

Faible développement de la musculature axiale




Faible protection du cerveau : fermeture incomplète des sutures

faible épaisseur de la voûte crânienne myélinisation incomplète espace sous arachnoidien plus petit contenu intracérébral en eau plus grand

TC grave

Lésions axonales diffuses +++ Œdème cérébral +++

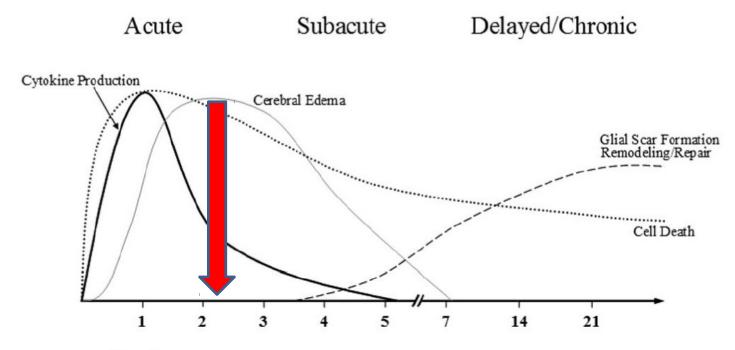
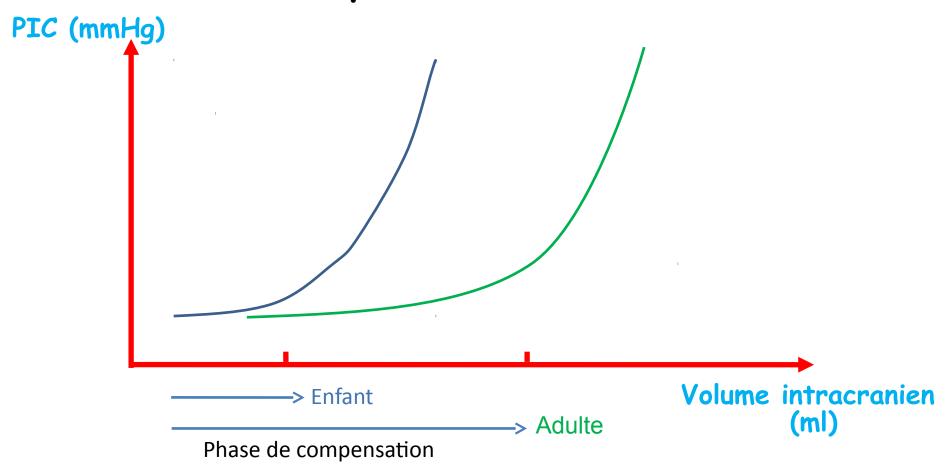
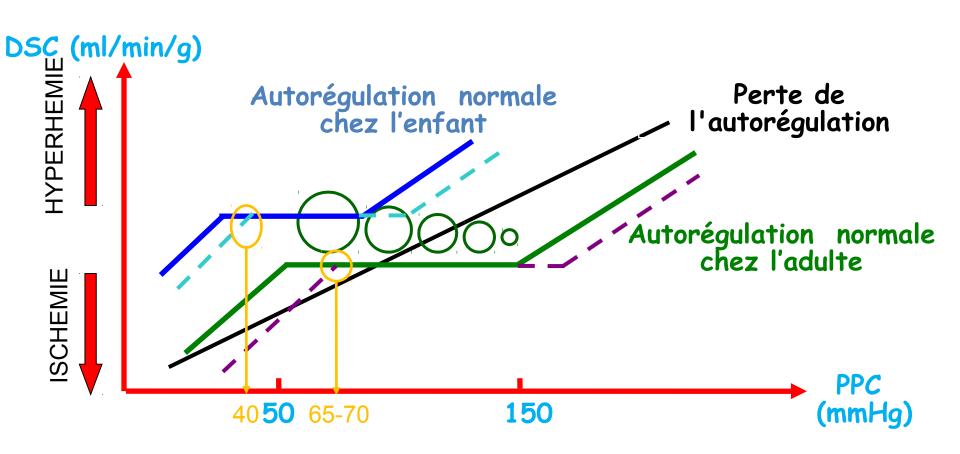


Figure 1.


Timing in days of cytokine production, cerebral edema, scar formation, and delay cell death after TBI.

Attention au syndrome « des enfants qui parlent et meurent »



Compliance cérébrale

Kosteljanetz M. Intracranial pressure: cerebrospinal fluid dynamics and pressure-volume relations. Acta Neurol Scand 1987;111:1-23

Quand soupçonner un traumatisme grave?

- Notion de cinétique élevée
 - Piéton renversé à une vitesse > 40 km/h
 - Chute > 3 m (3 fois taille patient)
 - Accident de véhicule léger (VL) à grande vitesse
 - Traumatisme pénétrant ou écrasement

Circonstances associées

- Incarcération prolongée
- Éjection pour un passager d'un VL
- Existence d'autres blessés graves dans l'accident
- Explosion ou feu associé

Reconnaissance défaillance

Prise en charge à l'arrivée « Treat first what kills first »

Examen clinique (< 5 min):

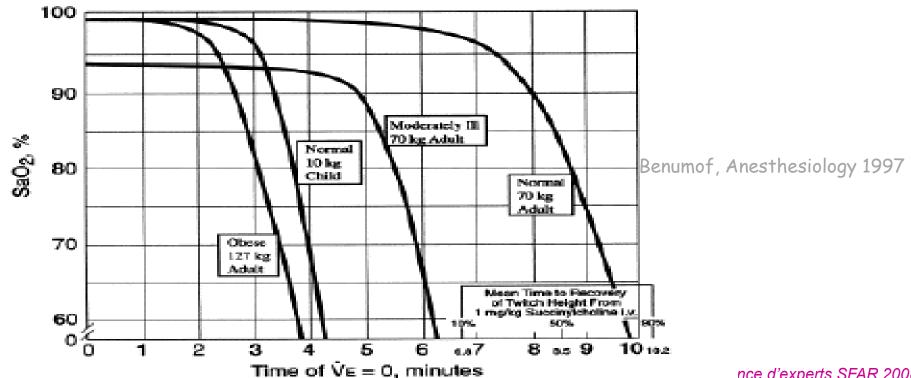
- respiratoire (signes lutte, FR, SpO2, auscultation)
- hémodynamique (FC, PA, TRC)
- neurologique (Glasgow, pupilles)
- bilan traumato et paraclinique (hémoccue)

Score de Glasgow (Y,V,M)

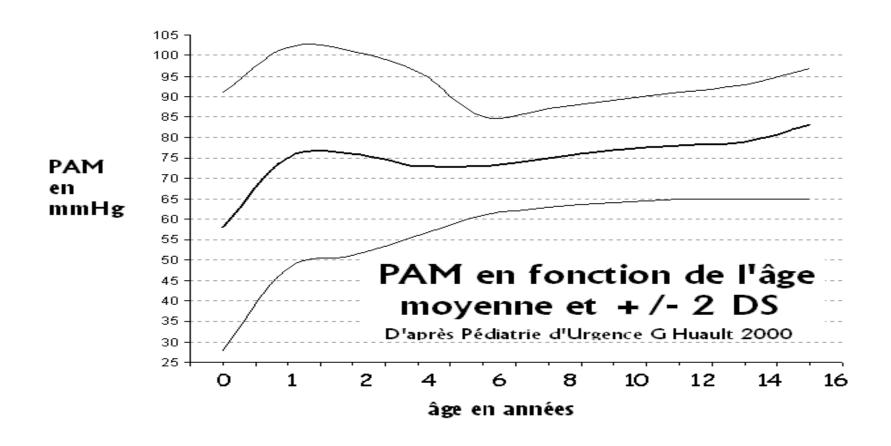
ADULTE A la ENFANT (> 5 ans)

OLE

Score Glasgow ≤ 8 = traumatisme crânien grave

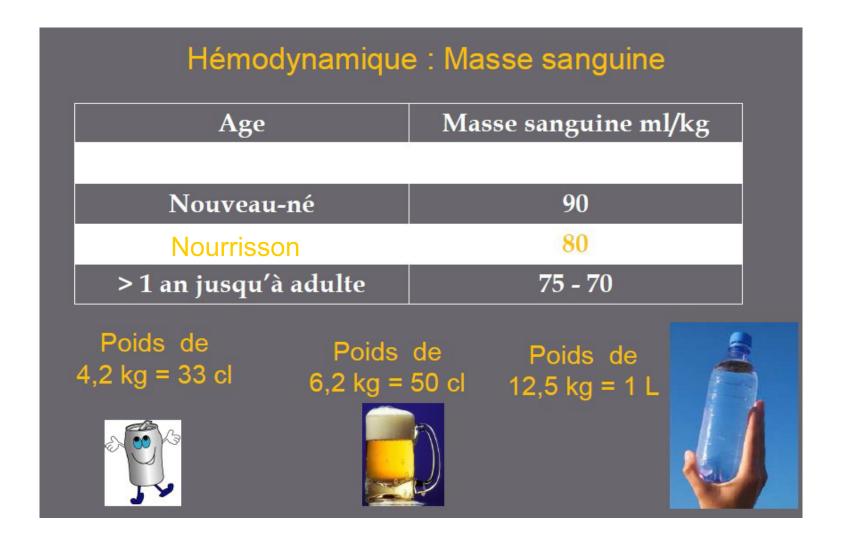

Libération des VAS = 1er geste (sang, débris alimentaires, chute de langue) puis 02

Indication large d'intubation trachéale: état de choc


Tout enfant polytraumatisé = estomac plein induction en séquence rapide

détresse respiratoire troubles de conscience GC5 < 8

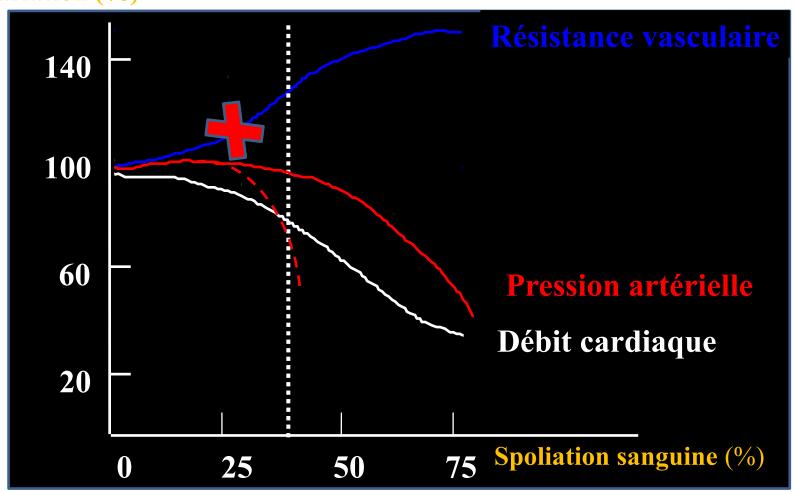
TIME TO HEMOGLOBIN DESATURATION WITH INITIAL $F_AO_2 = 0.87$



Hypotension artérielle si PAS < 70 + 2*âge (années, jusqu'à 10 ans)

Si TCG, maintenir la PAS > 90 + (2 x âge [années]) jusqu'à 10 ans

Estimation poids: 2 * (âge années + 4)


	Pertes sanguines			
Signes cliniques	< 20 %	25 %	40 %	
Cardio-vasculaires	pouls filant	pouls filant	hypotension	
	tachycardie	tachycardie	tachy/bradycardie	
Cutanés	peau froide	extrémités froides	pâle	
	TRC 2-3 s	cyanose	froid	
Rénaux	oligurie modérée	oligurie nette	anurie	
Neuropsychiques	Irritable	confusion	coma	
agressif		léthargie		

Réponses hémodynamiques à l'hémorragie chez l'enfant

Variation (%)

Soluté de 1 ère intention = chlorure de Sodium 0,9% Bolus de 20 ml/kg (500 ml) aussi vite que possible

+/- amines: Noradrénaline $0,1 \mu g.kg^{-1}.min^{-1}$ (palier 0,05)

Si choc hémorragique: Transfusion sanguine Etat de choc hémorragique répondant mal aux remplissages (40 ml/kg ... voire 20 ml/kg)

Transfusion CGR et PFC par palier 10 à 20 ml/kg, ratio 1:1, puis ajout plaquettes

Evaluation efficacité de façon dynamique: Baisse de FC de 20% Augmentation PAM Raccourcissement TRC

Protocole transfusion massive

Blood volumes and massive transfusion definitions by age group.

Age group	Estimated blood volume	Massive transfusion
Premature neonate	100 mL/kg	50 mL/kg over 12 h
		100 mL/kg over 24 h
Term neonate	90 mL/kg	45 mL/kg over 12 h
		90 mL/kg over 24 h
Infants	80 mL/kg	40 mL/kg over 12 h
		80 mL/kg over 24 h
Older children	70-80 mL/kg	35-40 mL/kg over 12 h
	. 3	70-80 mL/kg over 24 h

Diab YA et al. Massive transfusion in children and neonates. Br J Haematol. 2013;16:15-26. Neff LP et al. Clearly defining pediatric massive transfusion: cutting through the fog and friction with combat data. J Trauma Acute Care Surg. 2015;78:22-8

Acide tranexamique (Exacyl)?

Table 1 Criteria for the use of tranexamic acid in pediatric trauma

Immediate need for transfusion, with any one of the following indicating severe shock^a

- Systolic blood pressure low (<80 mmHg <5 years and <90 mmHg ≥5 years)
- Poor blood pressure response to crystalloid 20–40 ml/kg
- Obvious significant bleeding

^aThe Hospital for Sick Children Massive Hemorrhage Protocol for the use of tranexamic acid in pediatric trauma. April 2014.

Beno et al. Critical Care 2014, 18:313 http://ccforum.com/content/18/4/313

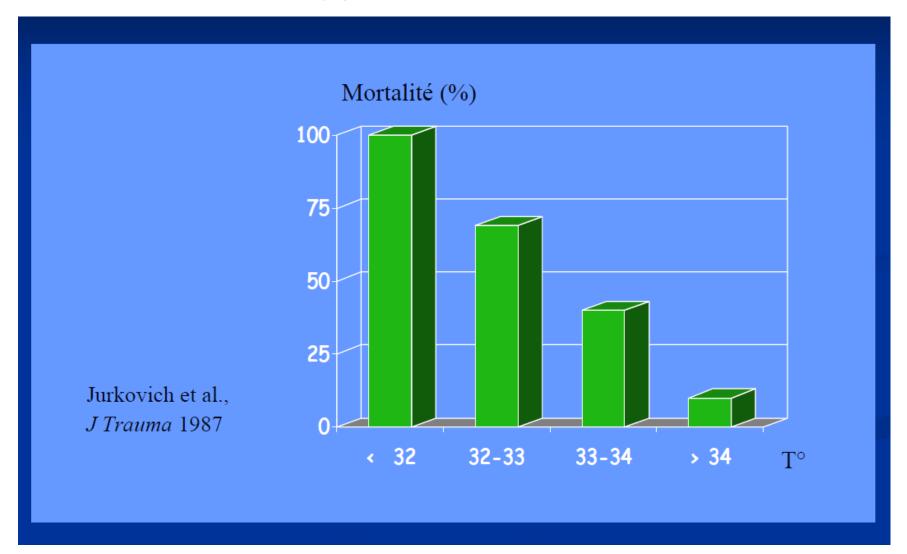
VIEWPOINT

Tranexamic acid in pediatric trauma: why not?

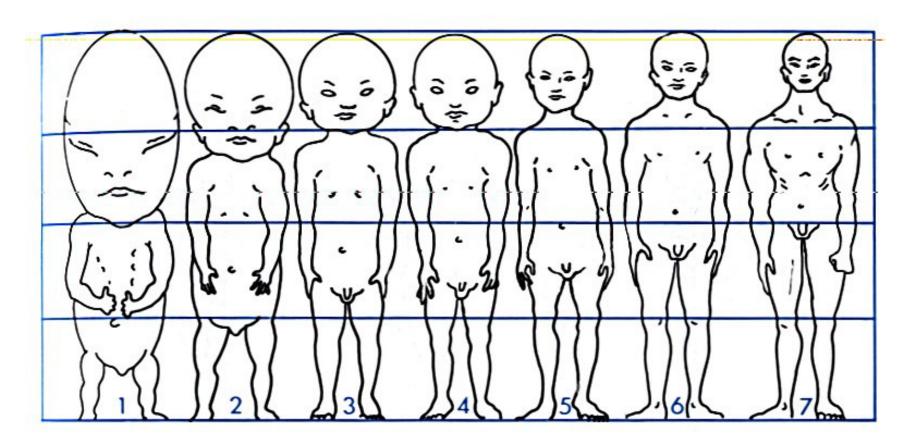
Suzanne Beno^{1*}, Alun D Ackery², Jeannie Callum³ and Sandro Rizoli²

Table 2 Tranexamic acid dosing in pediatric trauma

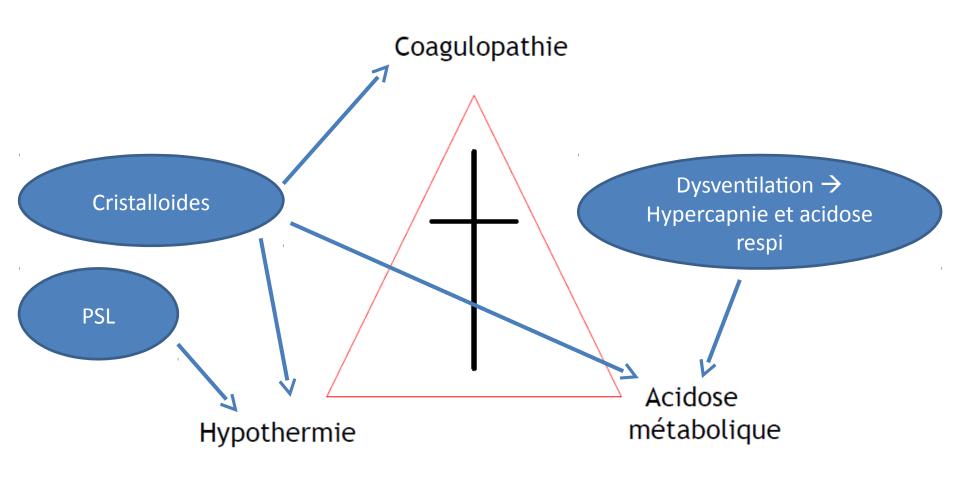
Age	Loading dose (administer within 3 hours)	Subsequent dose	
≥12 years::adult 1 g intravenously over 10 minutes protocol		1 g intravenous infusion over 8 hours	
<12 years	15 mg/kg intravenously over 10 minutes (maximum dose 1 g)	2 mg/kg/hr intravenous infusion over 8 hours or until bleeding stops	


Fibrinogène (objectif 2 g/I): 30 à 50 mg/kg (adapter selon dosage)

Ca++ si transfusion massive: gluconate de Ca 10%:60 mg/kg soit 0.6 ml/kg (max 3g = 30 ml)

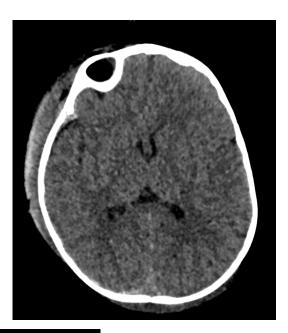


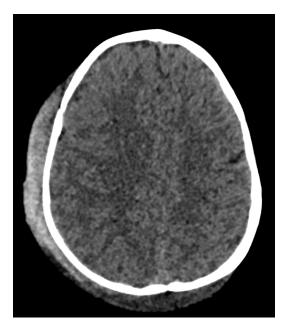
Hypothermie

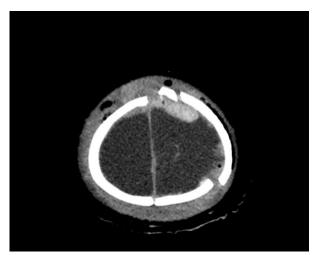


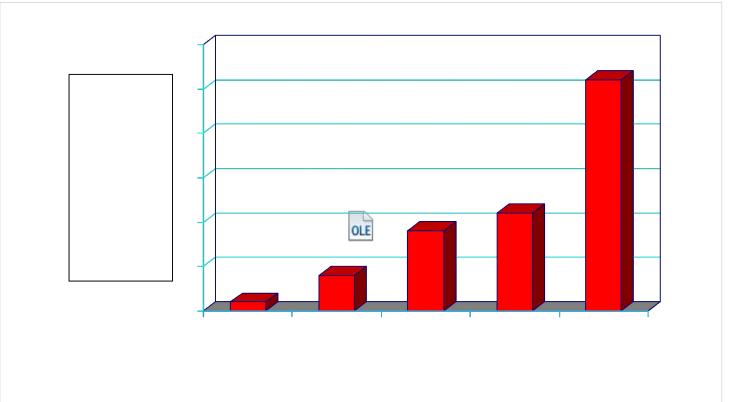
Adapter les méthodes de réchauffement et début précoce +++

Triade de la mort




	Causes de détresse circulatoire
Choc hémorragique	 hémorragie extériorisée
	 hémorragie interne
	-hémorragie intra-abdominale
	- hémorragie intra-thoracique
	- hématome intra-crânien
Choc obstructif	pneumothorax, tamponnade
Choc cardiogénique	contusion myocardique
Choc distributif	anaphylaxie, choc spinal, sepsis





Détresse neurologique : Attention aux ACSOS

Early Hypotension Worsens Neurological Outcome in Pediatric Patients With Moderately Severe Head Trauma

By Evan R. Kokoska, Gregory S. Smith, Thomas Pittman, and Thomas R. Weber

J Pediatr Surg. 1998;33:333-8

- 72 enfants
- 6 ans
- 6 ≤ GCS ≤ 8

Quel seuil minimal de PPC?

- Entre 0 et 5 ans: PPC > 40 mmHg
- Entre 5 et 11 ans: PPC > 50 mmHg
- > 11 ans: PPC entre 50 et 60 mmHg

Management of severe traumatic brain injury (first 24hours). Anaesth Crit Care Pain Med. 2018;37:171-186..

- Entre 0 et 5 ans: PPC > 40 mmHg
- ≥ 6ans: PPC > 50 mmHg

Guidelines for the Management of Pediatric Severe Traumatic Brain Injury, Third Edition: Update of the Brain Trauma Foundation Guidelines, Executive Summary. Pediatric Crit Care Med 2019, 20:280-289

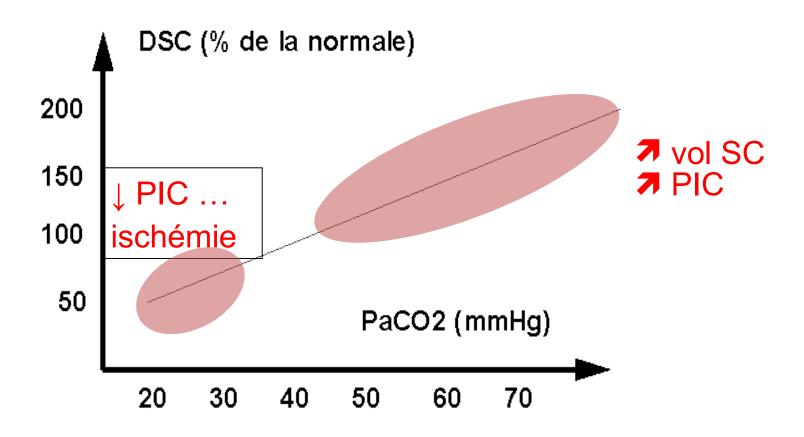
Quel objectif de PAM ?

Objectif PAM = seuil PPC + 20

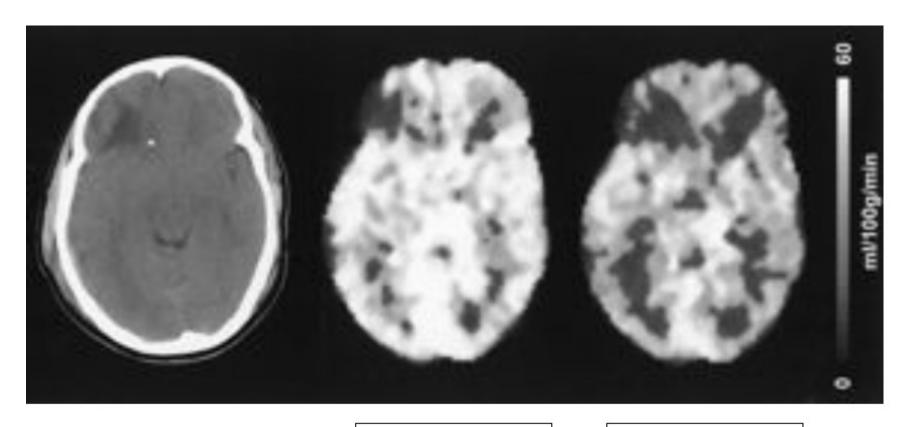
Ex 1 an avec TC grave, objectif: PAM > 60 mmHg

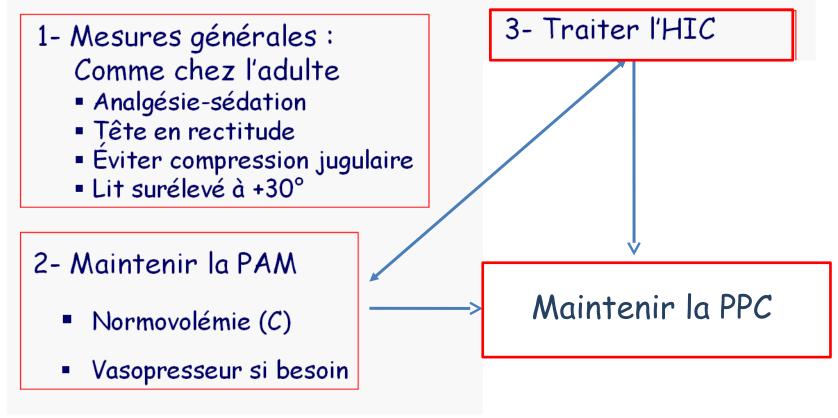
En pratique, objectifs de PAM +++:

Entre 0 et 5 ans: PPC > 40 donc PAM ≥ 60 mmHg


Entre 5 et 11 ans: PPC > 50 donc PAM ≥ 70 mmHg

> 11 ans: PPC entre 50 et 60 donc PAM ≥ 80 mmHg


Relation PaCO2-DSC



Relation PaCO2-DSC

PIC = 21 mmHg PaCO2 = 4,7 kPa 36 mmHg PIC = 17 mmHg
PaCO2 = 3,5 kPa
27 mmHg

Lutte contre les ACSOS

R7.3 – Il faut administrer du mannitol 20% ou du sérum salé hypertonique (250 mosmol) en 15 à 20 minutes en traitement d'urgence d'une hypertension intracrânienne sévère ou de signes d'engagement, après contrôle des agressions cérébrales secondaires.

(GRADE 1+) Accord FORT

Management of severe traumatic brain injury (first 24hours). Anaesth Crit Care Pain Med. 2018;37:171-186..

En pratique:

mannitol 20%: 0,5 g/kg (2,5 ml/kg) IVL sur 15 min

Enfant polytraumatisé

Prise en charge sur les lieux par une équipe médicalisée

Reconnaissance et stabilisation des détresses vitales

Bilan du polytraumatisme potentiel

> 2 abord veineux périphérique

Maintenir l'axe tête-cou-tronc

Perfusion: NaCl 0,9%

Intubation en séquence rapide

Maintenir la normovolémie Cristalloides +/- amines (NA) PSL si hémorragie Personnaliser objectifs PAM Vt 6-8 ml/kg FR selon âge et pour : 35<FeCO2<40 mmHg FiO2 pour SpO2 ≥96% Sonde oro-gastrique

Entretien de la sédation : midazolam (50-200 µg/kg/h) + morphinique

Osmothérapie si HTIC: Mannitol 0.5 g/kg (= 2.5 ml/kg si 20%)

Surveiller: FC, PAS, GCS, pupilles, EtCO2, SpO2

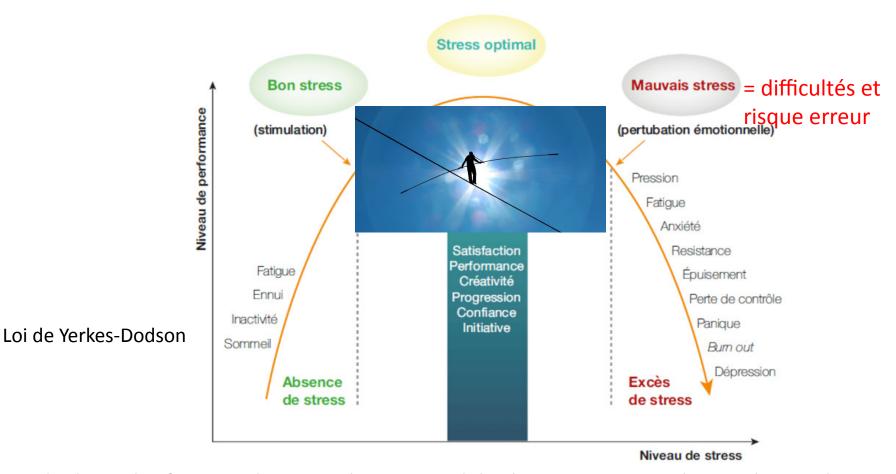
Régulation par le SAMU

Centre trauma pédiatrique

Communication

Régulation: Aider, anticiper et coordonner

Centre 15


Réanimateur pédiatrique Equipe SMUR

Stress soignants

La relation entre performance et stress

Ghazali DA et al, Performance Under Stress Conditions During Multidisciplinary Team Immersive Pediatric Simulations. Pediatr Crit Care Med. 2018 Jun;19:e270-e278.

Herzberg S et al, Association between measured teamwork and medical errors: an observational study of prehospital care in the USA. BMJ Open. 2019 Oct 31;9:e025314

